skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taylor, Darryl_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Bacterial biofilms are complex, multi‐component structures consisting primarily of four key elements: polysaccharides, metal ions, proteins, and extracellular DNA. In our research, we specifically focus on the polysaccharide and metal ion components, which play a crucial role in determining the biofilm's mechanical properties. Polysaccharides provide the structural matrix, although metal ions, particularly divalent cations like calcium and cobalt, cross‐link with the polysaccharides, thereby modulating the biofilm's rigidity and viscoelastic behavior. By introducing divalent cations into nanocellulose, we can replicate this natural cross‐linking process, allowing us to finely tune the material's mechanical properties to more closely resemble those of bacterial biofilms. This approach not only enhances the accuracy of synthetic biofilm models over alginate hydrogels but also provides valuable insights into how biofilms maintain their structural integrity in various environments. Our findings indicate that nanocellulose exhibits mechanical properties closer to biofilms than alginate analogs, making it a suitable non‐living control for biofilm studies. Furthermore, divalent nickel, followed by calcium and magnesium, demonstrate a closer mechanical mimicry to biofilms. In conclusion, this research shows the potential of nanocellulose as a versatile material for bacterial biofilm mimicry. 
    more » « less